
John Brittain

4 / 30 / 2024

CPRE 281

Student ID:

Final Project Report

For this project, I decided to create a 12 step digital sequencer. Which is a musical

device that sequences through beats and plays set tones back to the user in that sequence. The

user can save a note to each beat that will then will be played back when the sequencer arrives

at that beat's position. To achieve this I used many different types of common digital logic

devices throughout this project such as; clock dividers, button toggles, MUXes, Registers,

decoders etc. This report begins with the Top Level Diagram overviewing the general structure

then later on, focuses on specific sections of the project. Controls and FSM Diagram, Data

Processing and Register File, Outputs, and Final Thoughts.



Above is the FPGA while running the device, play back shows the note which is currently saves

at each beat, tone select shows the note you want to save onto each beat, and the tone button

cycles through 0 - 12 corresponding to the tone, holding down save, saves a tone to the

switches you have engaged, and play starts and stops the sequencer.



Top Level Diagram



The diagram above is the complete schematic of the device, there is quite a bit to unpack here

so I’ll keep this description very general for describing the function of each section. On the left

hand side you will see three input nodes, these are the buttons which are used to control the

device. The top, is the PlayStopbutton which toggles the sequencer to begin. Below that is the

SaveStatebutton, which is anded with each of the twelve switches and effectively acts as an

enable for the registers to save the 4 bit tone data into the registers. Below that button is the

toneselectbutton, which counts from 0 - 12 to supply tone data into the registers. 0 being no

note played, and 1 - 12 being the notes in a standard musical C scale.

To the right of the buttons, you will see a large portion of the device are input nodes which

correspond to twelve switches on the FPGA, these switches toggle which beat of the

sequencer to save the tone data too. That way you can control which note you would like to

play on a beat.

Above you have a button toggle feeding into a 180bpmclockdivider which slows down the

native clock frequency of 50MHz to 3 hz or 180 beats per minute. That signal then is connected

to a sequencer, which is essentially a counter that repeats from 1 - 12 cycling through each

beat. From the sequencer is splits off into a LED portion that lights up which beat it’s currently

on and a selector node in the 4bit12to1MUX. The MUX then outputs the tone value

corresponding to the beat that the sequencer is currently on. The MUXes inputs are each of the

4 bit registers of which there are twelve.

Below the switches you will find the source clock of 50MHz, the tone select button which

connects into a debouncer, then into an incrementcounter from 0 - 12, from there it feeds a 4

bit binary number data bus into each of the twelve 4bitregisters gated by the switch and save



state controls. The signal also splits from the increment counter into a seven segment display,

which displays to the user which tone they are currently set to save.

Controls and FSM Diagram

Toggle Switches

The toggle switches play an essential role in saving the tone value into a 4bitregister. (Note

only 4 of the 12 total switches are shown). These switches correspond the SW0 - SW11

switches on the FPGA. Each switch is wired into an and gate with the SavestateButton and

then directly wired in the EN input of a register. When a switch is toggled, a logic of 1 enters a

gate anded with the SaveStatebutton, and when both of those are 1 the EN input of the

corresponding 4bitregister is 1, loading the registers with the tone data. If the switch is not

toggled, it outputs a 0 and does not satisfy the conditions of the and gate, which then outputs a

0 into the EN inputs of a register, the register then holds whatever value that has been stored

before.



Save/State Button

The SaveStatebutton which is set to KEY2 on the FPGA works in tandem with the switches to

ensure that tone data is not saved into one of the 4bitregisters without the user enabling it. To

do this the SaveStateButton is wired into twelve and gates along with each switch. Gating the

output, and enabling/disabling the registers.



Play/Pause Button

The PlayPause button KEY1 on the FPGA is pressed and toggles the sequencer on and off,

allowing user-control of the sequencer. To do this, an input is wired into ButtonToggle and then

into the toggle input of Sequencer.

The KEY1 button(and all the other buttons like it) does not toggle between 0 or 1 natively, it only
outputs a 1 for the duration the button is held down. In order to add a functioning toggling button
I created code.

Above is the verilog code for ButtonToggle, there are two inputs; btn_in and clk, and one output
toggle_out (set default of 0). On each positive edge of the clk the previous state of the button
btn_in_prev is set less than or equal to btn_in, limiting btn_in_prev to just 0 or 1 values. And
saving the state of the previous button value.

If btn_in_prev equals 0 and btn_in equals 1 (the button is pressed) the output signal
toggle_out is set less than or equal to the inverse of toggle_out, effectively flipping between 0
or 1. This code creates a functional toggling button that holds a value until the button is pressed
and the output flips again.



Tone Select Button

The ToneSelect KEY3 on the FPGA outputs a pulse signal that increments a 4bit binary

number between 0 - 12. This allows the user to select which tone to save to one of the registers.



To do this I have an input ToneSelect wired into the btn_in input of

DebouncedPulseGenerator which ensures that when the button is pressed only a short output

pulse is generated for one clock cycle, without this a single press of the buttons could increment

the counter very quickly and uncontrollably.

The pulse that is generated from the DebouncedPulseGenerator is then wired into the input

btn of FourBitButtonIncrementCounter. The function of which counts up from 0 to 12 then

resets back to 0(no note). Because there are 12 notes in a scale the button is only set to count

up to 12, yet that still requires 4 bits of data to represent. Hence the entire device, is designed to

handle mostly 4 bit binary numbers.

Above is the verilog code for FourBitIncrementCounter. It counts two inputs btn and clk, and

one output bus counter.

On each positive edge of the clock btn_prev is set equal to btn and stores the previous button

press, this helps detect when the button is pressed.



A group of nested if statements which first detects if btn_prev is equal to 0 and btn is equal to 1

to ensure the counter is only incremented with a button press.

Then the reset logic if counter already equals 12 then it gets reset to 0 otherwise counter

increments by 1 decimal value.



Data Processing and Register File

Clock Divider

In music rhythm is very important, typically rhythm follows a tempo, tempo is measured as beats

per minute. For this device I have designed the tempo to be 180 beats per minute or bpm. To do

this I created a clock divider that would take the clk signal of 50MHz and outputs a much much

slower signal of 3hz (180 bpm). This would serve as the tempo of the sequencer.

Above is the verilog code for ClockDivider180BPM, there is only one input sys_clk which is

the 50MHz signal of the FPGA clock. The output bpm_clk outputs 3hz.

I create a local parameter HALF_PERIOD_COUNT which is the value of the desired period

divided by 2. I use the half period because I want the rising edge of the signal to match 180

bpm.

For each positive of the clock a register counter increments to keep track of how many clock

cycles have occurred.



If the counter is less than HALF_PERIOD_COUNT - 1 a full period of 3hz has occurred,

therefore bpm_clk is inverted, which creates a square wave pattern, and the counter is reset

to 0.

Otherwise the counter will increment with each clock cycle.

This code creates a square wave of 3hz or 180bpm.

Sequencer

Once the system's native clock frequency is slowed to 180bpm the output signal goes into the

Sequencer. The sequencer much similarly to FourBitButtonIncrementCounter increments

12 times and resets on each rising edge of the newly generated 3hz signal. The sequencer

outputs a 4bit bus into a module LED_Sequence controlling turning on the LED’s and into a

select input of the 12-1MUX below.



MUXes

This MUX is a fairly standard and recognizable component in digital logic, all this MUX does is

output one of the twelve saved tones from 4BitRegister depending the cycle of the sequencer.

For example if the note 10 is saved on 4BitRegister 3, when the sequencers output is 3 the

MUX outputs a 10. (In this case the MUX’s output is wired into a seven segment display, in

practical application this output would be wired into a square wave generator which then

generates a square wave corresponding to the specific pitch of the tone, but due to the lack of

knowledge of how to output a square wave as an audio signal I opted for just visually showing it

via a display)



Register File

4bitRegisterFile is also a very straightforward and recognizable component in digital logic, this

allows a 4 bit number Data[3..0] to be loaded or saved depending on the EN enable input. To do

this a bus Data[3..0} sends a 4 bit signal into 4 2-1Mux which controls the load/store

functionality by determining the path of the data into 4 Dflipflops. These flip flops each hold a

single data bit. This is known more specifically as a parallel access register. The DFlipFlops

then output these bits into a bus Q[3..0]. This component practically serves as the memory of

the entire sequencer in which the tone data can be saved and played back later.



Outputs

Seven Segment Display

Above is the verilog code for module Seven_Seg_Decoder which takes a 4bit input and then

converts that into a 7bit binary to be read and output into a seven segment display. This

component is seen multiple times in the device and stays the same. Specifically they display the



Tone Select, and Tone Playback of the device. Functioning more just to show the user what is

happening instead of affecting any internal logic.

Red LEDs

Above is the verilog code for the module led_sequence which controls the LEDs that light up

above the switches on the FPGA. Whenever there is a positive edge in the bpm_clk a red LED

that corresponds with the current beat of the sequencer lights up, otherwise stays unlit.

This component serves as a visual representation of where the beat is for the user to see, it

does not affect any internal logic of the device.

To do this a 4 bit data is fed into led_sequence and depending on the value of that data a red

led lights up. This is directly connected to the same bpm_clk of the sequencer so the LED and

the note is directly correlated with one another.



Green LEDS

There are only two green LEDS connected to the device and they show the state of the buttons,

PlayPause and SaveState. When the LED is lit up the sequence is in play state, and save

state. Otherwise it is paused or not in save state.

Final Thoughts

That concludes the overall and technical description of my final project's innerworkings and

design. Although this project in it’s current state works just fine I believe I can make it better by

adding a reset function, and a way to dynamically change the tempo on the fly.

Of course a major problem with this device being a sequencer is that it does not actually output

any sound, despite this I believe the design to be a very functional scaffold for a digital

sequencer and in theory it would work exactly as intended. Unfortunately converting digital to

audio using the FPGA’s onboard DAC proved to be too technically challenging for a person of

my skill level. Though I hope that this report has cleared any confusions about the functionality

of the device, and that a person could imagine the whole purpose of my project which is

creating and listening back to some great sounding music. Overall, I used many of the topics,

devices, and skills I learned directly from this class, and it was very cool and educational to

create something like this and well worth the hardwork and effort I put into it.


